

Department of Environmental and Forest Engineering School of Engineering and Applied Sciences National University of Mongolia

Radioactive levels and human health effects in a dumpsite on Ulaanbaatar city, Mongolia

Doctor, Associate Professor, Batsuren Dorjsuren

2022.11.21

1. Introduction

Urban pollution has a significant negative impact on the health of the population and the socio-economy (Wang and You, 2021). Ulaanbaatar is located in central Mongolia and is the most important region in the country (Dorjsuren et al., 2021).

1. Introduction

Soil radioactivity is one of the main factors involved in the pollution of air, soil and water habitats. It is important to estimate the natural radioactivity level in soils and rock to evaluate the terrestrial gamma dose rate for outdoor environments (Mehra et al., 2007).

		Radioactive elements	
City and town	⁴⁰ K	²³⁸ U	²³² Th
Ulaanbaatar (40 point)	880±55	33 ± 9	39 ± 7
Average of 19 town	835	28	32
World Average	370	25	25

Table 1. Radioactive level of natural radioactive element in the soil (Bq kg⁻¹) of Ulaanbaatar

1. Introduction

Table 2 is a comparison of different specific activy of isotopes including 238U, 232Th, and 40K in soils between Ulaanbaatar, China, Japan, America and average value across the world. The specific activity of 238U in Ulaanbaatar is between 1.1 and 1.8 times higher than the average value across Earth; likewise, the activation percent of 232Th is 1.1 to 2.7 times higher and 40K is from 1.2 to 2.4 times higher (Table 2).

Country when	Specific Activity Bq kg ⁻¹				
Country, urban	²³⁸ U	²³² Th	⁴⁰ K		
Ulaanbaatar, Mongolia	33	39	880		
Japan	15.9	22.5	443		
China	40	49	580		
United States of America	35	35	370		
World Average	25	25	370		

Table 2. Comparison of radioactivity levels in selected countries with those of Ulaanbaatar

Purpose of this research, to quantify the soil radioactivity element and radioactive isotopes and applied the hazard index to determine the around landfill.

2. Materials and Methods.

~	Specific Activity Bq kg ⁻¹						
Sample code	²²⁶ Ra	²³² Th	⁴⁰ K	¹³⁷ Cs			
NE - 1	20	25	658	<1.1			
NE - 2	18	21	629	<1.1			
NE - 3	21	18	700	3			
NE - 4	19	21	716	4			
NE - 5	25	23	701	<1.1			
NE - 6	19	14	393	<1.1			
NE - 7	32	12	498	<1.1			
NE - 8	13	34	843	<1.1			
NE - 9	30	30	885	<1.1			
NE - 10	24	25	679	<1.1			
NE - 11	24	31	916	<1.1			
NE - 12	25	27	875	<1.1			
NE - 13	35	23	701	<1.1			
NE - 14	26	28	967	<1.1			
NE - 15	46	35	1136	<1.1			
Reference site	13	13	650	<1.1			
Average of area	24	24	747	<1.1			
Minimum	13	12	393	<1.1			
Maximum	46	35	1136	4			
Ash	129	59	1626	<1.1			
S.D	34.9	13.9	334.2	-			
Median	19.5	21	679	-			

Table 3. Activation of natural and studied radioactivity isotope

$$Ra_{eq} = A_{Ra} + 10^{7} A_{Th} + 10_{130A_{k}}$$
(1)

$$H_{ex} = A_{Ra}^{370} + A_{Th}^{259} + A_{k}^{4810}$$
 (2)

$$H_{in} = A_{Ra}^{185} + A_{Th}^{259} + A_{k}^{4810}$$
(3)

$$D_{outdoor} = (4.27 * C_{Ra} + 6.62 * C_{Th} + 0.43C_{k}) * 0.01$$
 (4)

$$D_{indoor} = D_{outdoor} * 1.2$$
(5)

$$ELCR = {\binom{1}{E_{in} + E_{out}}}_{*} LE * RF$$
(6)

$$N_t = N_0 e^{-\kappa t} \tag{7}$$

1 4 5

Sample code	Specif ²²⁶ Ra	ie Activi kg ⁻¹) ²³² Th	ty (Bq ⁴⁰ K	Radium equivalent activity (Bq kg ⁻¹)	Exte Haz ind H _{ex}	ernal tard lex H _{in}	Absorbe Rate (n D _{outdoor}	ed Dose Gy-h ⁻¹) D _{indeor}	Annual o Dose (n E _{outdoor}	effective aSv·y ⁻¹) E _{outdoor}	Excess Life-time Cancer Risk (*10 ⁻³)
NE-1	20	25	658	106.33	0.29	0.34	53.38	64.06	0.07	0.37	1.30
NE-2	18	21	629	96.38	0.26	0.31	48.64	58.36	0.06	0.33	1.18
NE-3	21	18	700	100.56	0.27	0.33	50.98	61.18	0.06	0.35	1.24
NE-4	19	21	716	104.08	0.28	0.33	52.80	63.36	0.06	0.36	1.28
NE-5	25	23	701	111.78	0.30	0.37	56.04	67.25	0.07	0.39	1.36
NE-6	19	14	393	69.23	0.19	0.24	34.28	41.14	0.04	0.24	0.83
NE-7	32	12	498	87.45	0.24	0.32	43.02	51.63	0.05	0.30	1.05
NE-8	13	34	843	126.42	0.34	0.38	64.31	77.17	0.08	0.44	1.56
NE-9	30	30	885	141.04	0.38	0.46	70.72	84.87	0.08	0.64	1.2
NE-10	24	25	679	112.03	0.3	0.36	55.99	67.19	0.06	0.51	1.04
NE-11	24	31	916	138.86	0.37	0.44	70.15	84.19	0.08	0.64	1.1
NE-12	25	27	875	130.98	0.35	0.42	66.17	79.4	0.07	0.6	1.06
NE-13	35	23	701	121.86	0.32	0.42	60.31	72.37	0.07	0.56	1.19
NE-14	26	28	967	140.49	0.37	0.45	71.21	85.46	0.08	0.65	1.24
NE-15	46	35	1136	183.52	0.49	0.62	91.66	109.92	0.11	0.84	1.58
Reference site	13	13	650	81.57	0.22	0.26	42.11	50.53	0.05	0.29	1.02
Average	24	24	747	115.79	0.31	0.38	58.24	69.88	0.07	0.47	1.20
Min	13	12	393	69.23	0.19	0.24	34.28	41.14	0.04	0.24	0.83
Max	46	35	1136	183.52	0.49	0.62	91.66	109.92	0.11	0.84	1.58
Ash	129	59	1626	338.36	0.91	1.26	164.06	196.87	0.2	1.13	3.99
S.D	6	7	139	16.9	0	0	8.9	10.7	0	0.1	0.2
median	20	21	679	102.32	0.28	0.33	51.89	62.27	0.06	0.36	1.26
World	25	25	370	370	1	1	57	84	0.07	0.34	1.45*10 ⁻³

 Table 4. Radium equivalent activity, Indoor and outdoor radiation indices, Excess life-time cancer risk

The strongest relationship was between a radium equivalent activity and the excess lifetime cancer risk (Fig. 3).

Fig. 3. Correlation between radium equivalent activity and excess lifetime cancer risk.

The radionuclide's fallout results show relatively little change. All samples measured at the dumpsite have high levels of radioactive isotopes, indicating that the waste content at the dumpsite has a strong impact.

	Specific activity $(Bq \cdot kg^{-1})$								
		²²⁶ Ra			²³² Th			⁴⁰ K	
Sample code	Measurement results	Radionuclide fallout	Calculation results	Measurement results	Radionuclide's fallout	Calculation results	Measurement results	Radionuclide fallout	Calculation results
Average site conditions	24	0.98	23.01	24	1.00	23.00	747	1.00	746.00
Min	13	0.98	12.01	12	1.00	11.00	393	1.00	392.00
Max	46	0.98	45.01	35	1.00	34.00	1,136	1.00	1,135.00
Ash	129	0.98	128.01	59	1.00	58.00	1,626	1.00	1,625.00
Reference site	13	0.98	12.01	13	1.00	12.00	650	1.00	649.00

 Table 6. Radionuclide fallout and calculation results

- The activity levels of the soil radionuclides as ²²⁶ Ra, ²³²Th, ⁴⁰K, and artificial ¹³⁷Cs were determined using GRS with Germanium detector in samples of soil collected from nearby of the dumpsite.
- The highest rate of radioactivity occurred in ash, indicating that radioactive elements and derived isotope were as a result of ash entering the landfill in Ulaanbaatar in winter. Radiation isotopes around the waste point are higher than the ambient radiation level.
- But it does not affect human health and the environment. The Ra_{eq} and other hazard indices were less than their respective limiting values showing that the surveyed area has no hazard from health point of view.

- Therefore, the data may provide a general reference level for the area studied and may also serve as an initial research study of Naran Enger landfill and surrounding area in Ulaanbaatar, Mongolia.
- In the future, we planning to continue the accumulative impact assessment of Ulaanbaatar city and to collect soil samples from different residential area and city center for protect human health.
- In the future, important to take lots of samples from different locations and to evaluate to be accumulated impacts on the environment and human health.

This work was supported by the Young Scientist Grant of the National University of Mongolia (grant: P2019-3717) with additional support from the Ministry of Education, Culture, Science and Sport, and the Mongolian Foundation for Science and Technology (SSA_2020/26).

Journal of Hazardous Toxic and Radioactive Waste ESCI (Web of Science) and Scopus (CiteScore: 2.7)

Case Study

Radioactive Levels and Human Health Effects in a Dumpsite on Ulaanbaatar City, Mongolia

Batsuren Dorjsuren¹; Sonomdagva Chonokhuu²; Davaadorj Davaasuren³; Tamir Enkh-Amgalan⁴; Munkhbat Byambajav⁵; Oyungerel Dashdorj⁶; Byambatseren Chuluunpurev⁷; and Batdelger Byambaa⁸

Abstract: Most of the solid waste from Ulambatar city during the cold season is ash from the partial combustion of coal. Burial of the ashes with other solid wastes has affected radioactive isotope levels in the soil. We investigated levels of radionuclides²²⁶Ra,²²³Th,⁴⁰K, and ¹³⁷Cs in soil samples collected from the Naran Enger landfill using a gamma-ray spectrometer. The radioactivity of naturally occurring radionuclides in the soil samples was highest underneath the buried waste zone, and lowest around the ger areas and at the initial reference location. In the buried zone, activity of ⁴⁰K isotope was two times higher than the world average. The results showed that radium equivalent activity (Ra_w) range between 69 and 183 Bq k₂G², and the Ra_w of ash was 338.3 Bq k₂G². The external and internal hazard indexes were 0.2 and 0.5, respectively. From the Ra_w and hazard indices were found to be within the recommended limits. **DOI:** 10.1061/(ASCE) HZ2153-5515.0000721. © 2022 American Society of Civil Engineers.

Author keywords: Naran Enger; Landfill; Radioactive isotopes; Hazard index.

Introduction

Urban pollution has a significant negative impact on the health of the population and the socioeconomy (Wang and You 2021). Ulanabaatar is located in central Mongolia and is the most important region in the country (Dorjsuren et al. 2021). Ulanabaatar eity has less radioactive material than other large eities in the world. However, depending on the location and nature of the waste, the level of radioactive isotopes in the soil may have increased over the last two decades. In the central landfills, the waste mainly comprises household and domestic items. Nonetheless, the composition of the waste is currently inappropriate as it allows organic and solid wastes, construction waste, and clinical waste to interact and consequently generate hazardoow waste.

Soil pollution depends on the solid waste properties and structures. A study by the Japan International Cooperation Agency (JICA) found that during 2005–2006, solid waste from Ulaanbaatar consisted of food waste (23%–36%), cotton waste (1%–4%), paper

¹Associate Professor, Dept of Environment and Forest Engineering, School of Engineering and Applied Sciences, National Univ. of Mongolia, Ikh Surguulin Gudamj-1, P.O. Box 46a/523, Ulaanbaatar 210646, Mongolia. ORCID: https://orcid.org/0000-0002-7864-8291. Email: baturen@jseas.num.cdu.mn

²Professor, Dept. of Environment and Forest Engineering, School of Engineering and Applied Sciences, National Univ. of Mongolia, Ikh Surguulin Gudamj-1, P.O. Box 46a/523, Ukanabastar 210646, Mongolia (corresponding author). ORCID: https://orcid.org/0000-0003-2724-9263. Email: cb.sonomdgava@umm.edu.mn

³Associate Professor, Dept. of Geography, School of Art & Sciences, National Univ. of Mongolia, Ikh Surguulin Gudamj-1, P.O. Box 46a/523, Ulanbaatar 210646, Mongolia. Email: davaadorj@mum.edu.mn ⁴Doctoral Student, Dept. of Soli Management, Faculty of Bioscience

Engineering, Ghent Univ, Coupare Links 653, Ghent 9000, Belgium, Noto. This manuscript was submitted on January 13, 2022; approved on May 22, 2022; published online on August 5, 2022. Discussion period open unit] January 5, 2023; separate discussions must be submitted for individual papers. This paper is part of the Journal of Hearnhoux, Taxic, and Radioactive Haste C. ASEC. ISSN 21255-5493. (13%-22%), plastic (14%-22%), metal (7%), and ashes (49%) (JICA 2007). There is also large seasonal variation in solid waste, specifically between summer and winter. During the winter, the proportion of ash is 60.2%; this is much lower during the sumer (JICA 2005). Combustion of coal results in the generation of huge amounts of ash, which is the primary environmental problem. This large concentration of ash represents one potential reason for increased solit andioactivity (Gupta tet al. 2013; Mondal et al. 2006).

Soil radioactivity is one of the main factors involved in the pollution of air, soil, and water habitats. Soil type strongly affects the behavior of radionuclides in soil and the soil retention characteristics (El-Taher 2013). It is important to estimate the natural nationetivity levels in soil and rock to evaluate the tenerstrial gamma dose rate of outdoor environments (Mehra et al. 2007). The geology around Ulambatar city is dominated by Paleozoic sedimentary rock or sandstone, conglomerate, and mudstone rocks. The occurrence and distribution of radioactive material in the soil and groundwater are controlled primarily by the local geology.

ORCID: https://orcid.org/0000-0003-4813-9223. Email: tamir.ea4@gmail com

³Associate Professor, Dept of Chemical and Biological Engineering, School of Engineering and Applied Sciences, National Univ. of Mongolia, Ikh Surguulin Gudami-1, P.O. Box 46a/523, Ulaanbaatar 210646, Mongolia. ORCID: https://orcid.org/0000-0001-9027-0597. Email: munkhbadi/sea.num.du.mu

⁶Associate Professor, Dept. of Philosophy and Religious Studies, Division of Humanities, School of Arts and Sciences, National Univ. of Mongolia, lkh Surgualiin Gudamj-1, P.O. Box 46a/523, Ulaanbaatar 210646, Mongolia. Email: oyungereld@inum.edu.rm

⁷Doctoral Student, Laboratory of Air and Environmental Monitoring, Graduate School, National Univ. of Mongolia, Ikh Surguulini Gudamj-1, P.O. Box 46a/523, Ulaanbaatar 210646, Mongolia. Email: ch. byambatseren1/gemail.com

⁸Associate Professor, Dept. of Environment and Forest Engineering, School of Engineering and Applied Sciences, National Univ. of Mongolia, Ikh Surguulim Gudamj-1, P.O. Box 46ay523, Ulaanbaatar 210646, Mongolia. ORCID: https://orcid.org/0000-0002-5154-7562. Email: batdelger@ises.um.edu.mn

J. Hazard. Toxic Radioact. Waste

© ASCE

Thank you for your attention

