

Forest Ecology, Biodiversity and Management NRM 512

Autumn 2022

Course Teacher(s)

Dr. Aasif Ali Gatoo Dr. Shah Murtaza Mushtaq Dr. Akhlaq Amin Wani

Content

- 1. General Information
- 2. Course Description
- 3. Course Goal
- 4. Course outcome
- 5. Course structure
- 6. Course assessment
- 7. References

Course code	•	FRM 512
Course Title	•	Forest Ecology,
		Biodiversity and
		Management
Number of credits	:	4
Course duration	•	18 weeks
Level	•	Postgraduate
Course Teacher	:	Dr. Aasif Ali Gatoo
		Dr. Shah Murtaza
		Mushtaq
		Dr. Akhlaq Amin Wani
Pre-requisite	:	Basic understanding of
		plant ecology and
		biodiversity at
		undergraduate level.

2. Course description

The course introduces the basics of forest ecology and biodiversity. It exposes the students to qualitative and quantitate analysis of forest ecosystems focused towards conservational concepts and global efforts towards conservation

3. Course objectives

This course would enable the students to understand the aspects related to forest ecosystem and its dynamics. As well it provides the knowledge on biodiversity conservation in natural forests and agro-ecosystems, policy issues, IPR, etc.

4. Course outcome

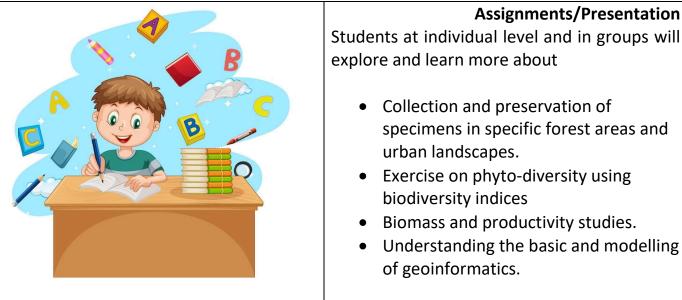
On completion of this course, the students would:

- Gain a wider understanding of ecology and phyto-diversity of forest landscapes.
- The students will enhance abilities and skills for survey, exploration and sampling strategies in forests and other green areas.
- It will enable the students to explore conservation areas and factors affecting thereof and develop understanding regarding national and global efforts towards conservation.

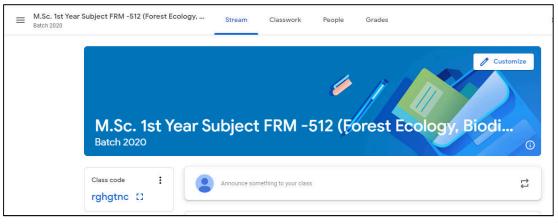
5. Course structure

	UNIT 1		
Week1	Introduction to forest ecology, forest population,		
Week2	forest community dynamics, forest community structure and analysis,		
WCCKZ			
	Practical:		
	Study of forest community structure and its successional status;		
Week3	forest productivity on a global scale, ecology of forest landscapes spatial heterogeneity; Hierarchy issues in ecology		
	Introduction to forest recreation: Trends in outdoor recreational use of wild land and natural areas with emphasis on state and federal parks and forests.		
Week4	Elements and characteristics of landscape ecology.		
	 Practical: Estimation of productivity of forest ecosystem; 		
	UNIT 2		
Week5	Biodiversity-an overview; genetic, species and ecosystem diversity; determinants of biodiversity.		
	Mid Term		
Week6	Higher plant diversity, species richness and endemism.		
Week7	Managing plant genetic resources: Basic science issues – genetic vulnerability and crop diversity, crop diversity-institutional responses,		
Practical:			
	preservation of specimen;		
Week8	in situ conservation of genetic resources, the science of collecting genetic resources, the science of managing genetic		
	UNIT 3		
Week9	Complementary strategies for plant biodiversity conservation. In situ conservation of wild species in nature reserves,		
	 Practical: Methods of vegetation analysis, Measurement of biomass and productivity; 		

AST-K	of the European Union		
Week10	in situ conservation components, factors influencing conservation value, national plan for in situ conservation.		
Week11	In situ conservation of Forest and agro-biodiversity on-farm: importance of on-farm conservation initiatives,		
Week12	overview of the types of information necessary in the design of an on-farm conservation programme.		
	UNIT 4		
Week13	Managing plant genetic resources: policy issues (exchange of genetic resources: quarantine,		
	 Practical: Quantification of litter production and decomposition; 		
Week14	IPR; genetic resources: assessing economic value; conflicts over ownership, management and use; national and international treaties/ legislations: CBD, IT-PGRFA, GPA, PVP and FR Act, Biodiversity Act, etc.).		
	 Practical: Trip to different regions of the state to study forest vegetation, Collection. 		
Week15	International instruments concerning agro-biodiversity, Agenda 21, convention on biological diversity (CBD), FAO and global system of PGR,		
	 Practical: Visit to national parks, wildlife sanctuaries, botanical gardens and arboreta. 		
Week16	the International Treaty on Plant Genetic Resources for food and agriculture (ITPGR), Global Plan of Action,		
Week17	TRIPS agreement and IPR protection of life forms.		
Week18	Practical Exam/Assignment submission/Presentation		
	End Tem Exam		


5. Course structure

	 In Class Lectures Students will be able to understand 1) Basics of forest ecology and biodiversity. 2) Qualitative and quantitate analysis of forest ecosystems focused towards conservational concepts and global efforts towards conservation.
	 Lab/Field Exercises Students will be able to study 1) Forest community structure and productivity of forest ecosystem; 2) Preservation of specimen 3) Methods of vegetation analysis, measurement of biomass and productivity;
	On line Tutorials Google Class Code: p4oikrn Students will explore and learn more about 1) Basic concepts of forest ecology, biodiversity and management through lectures notes.
Google Classroom	



Online tutorials

6. Course Assessment

Mode of assessment	% of marks
Quiz 1	5
Mid Term (Objective and Written)	20
Practical/Assignments (Discussion)	25
Quiz 2	5
End Term (Objective and Written)	45
Total	100

7. References

Compulsory

Avery TE and Burkharts H. 2001. Forest Measurements. McGraw-Hill Education.

Barnes BV, Zak DR, Denton SR and Spurrs SH. 1998. Forest Ecology. Wiley.

- Jha BC, Pandey BN, Jaiswal K, Katiha PK, Pandey PN and Sharma AP. 2012. Biodiversity: Issues Threats and Conservation. Narendra Publishing House, Delhi.
- Artmann M. Breuste J, Cristian Ioja C, Qureshi S. eds "Making Green Cities Concepts, Challenges and Practice", Springer "Cities and Nature" Series, ISBN 978-3-030-37715-1.

Recommended

Kumar Biju. 2013. Biodiversity and Taxonomy. Narendra Publishing House, Delhi.

- Larocque GR. 2016. Ecological Forest Management Handbook (Applied Ecology and Environmental Management). Taylor & Francis.
- Mahato B, Pandy BN, Singh LB, Panday PN and Singh RK. 2010. Text Book of Environmental Pollution. Narendra Publishing House, Delhi.
- Mikusiñski G, Roberge JM and Fuller R. 2018. Ecology and Conservation of Forest Birds (Ecology, Biodiversity and Conservation). Cambridge University Press.
- Pandey PN. 2009. Biodiversity and Environment Ecology. Narendra Publishing House, Delhi.
- Perry DA, Oren R and Hart SC. 2008. Forest Ecosystems. 2nd ed. Baltimore: Johns Hopkins University Press.

Young RA and Giese RL. 2003. Introduction to Forest Ecosystem Science and Management. Wiley. Bonneuil, Christophe and Jean-Baptiste F. The Shock of the Anthropocene: The Earth, History and Us. London; Brooklyn, NY: Verso, 2016. (Chapter 1: Welcome to the Anthropocene).

Brush SB. 1999. Genes in the Field: On-farm Conservation of Crop Diversity. Lewis Publishers, Boca Raton, Florida, USA.

Chandna RC. 2002: Environmental Geography, Kalyani, Ludhiana.

- Cunninghum WP and Cunninghum MA. 2004: Principles of Environmental Science: Inquiry and Applications, Tata Macgraw Hill, New Delhi.
- Engels JMM. 1995. In Situ Conservation and Sustainable Use of Plant Genetic Resources For Food and Agriculture in Developing Countries. IPGRI/ DSE.
- Jarvis D, Staphit B and Sears L. 2000. Conserving Agricultural Biodiversity in Situ: A Scientific Basis for Sustainable Agriculture. IPGRI, Rome, Italy.
- Maxted N, Ford-Lloyd BV and Hawkes JG. 1997. Plant Genetic Conservation: The In Situ Approach. Chapman & Hall, London.
- Wood D and Lenne J. 1999. Agrobiodiversity: Characterisation, Utilization and Management. CAB International, Wallingford.

ETH Zurich, Open Access models, https://ites-fe.ethz.ch/openaccess/