

Geoinformatics in Forest Resource Management FRM 604

Autumn 2022

Course Teacher(s)

Dr. Akhlaq Amin Wani Dr. Aasif Ali Gatoo Dr. Shah Murtaza Mushtaq

Content

- 1. General Information
- 2. Course Description
- 3. Course Goal
- 4. Course outcome
- 5. Course structure
- 6. Course assessment
- 7. References

1. General Information

Course code	:	FRM 604
Course Title	:	Geoinformatics in Forest
		Resource Management
Number of credits	:	4
Course duration	:	18 weeks
Level	:	Doctoral
Course Teacher	:	Dr. Akhlaq Amin Wani
		Dr. Aasif Ali Gatoo
		Dr. Shah Murtaza
		Mushtaq
Pre-requisite	:	Prior knowledge of
		handling computers and
		basic knowledge in
		Forestry.

Disclaimer: The European Commission's support for the production of this publication does not constitute an

2. Course description

This course is aimed to develop and understanding among the students on basics of geoinformatics and its application for sustainable management of natural resources.

3. Course objectives

The course prepares students for careers as leaders in understanding Remote Sensing (RS) and Geographical Information System (GIS) and Applications of RS and GIS in monitoring and managing forest resources.

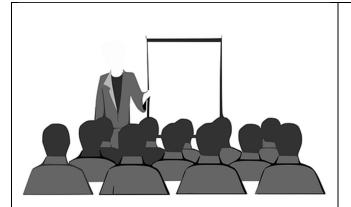
4. Course outcome

On completion of this course, the students would:

Gain a wider understanding of basic principles of remote sensing and GIS It will enable the students to explore and handle different satellite datasets for specific applications in forests and vegetation landscapes. The students will enhance abilities and skills for mapping and monitoring of changes associated with forest and urban green spaces for effective policy making and management.

5. Course structure

	UNIT 1	
Week1	Brief introduction to Remote sensing and GIS, Data structure, type and model: Raster and Vector data structure, vector data type, point, line and polygon.	
Week2	Data hierarchical models and overlays.	
Week3	Practical: Preparation maps; Visual interpretation of satellite imagery;	
	Forest cover mapping and land use mapping.	
Week4	Spatial analysis of vector based and raster based data in the software	
Week5	Digital elevation models, Global positioning system and differential GPS	
Week6	Practical: Spectral characteristics of vegetation, water and soil; Study of	
Weeko	Topo-sheets, Forest watershed delineation using GPS	
Week7	Mid Term Exam	
	UNIT 2	
Week8	Optical, thermal and microwave remote sensing, LiDAR remote sensing	
Week9	Practical: Satellite remote sensing; Study of satellite imageries; Digital image interpretation, Digital image processing in ERDAS software, image classification in ERDAS, preparation of thematic maps in Arc GIS	
Week10	Satellite image interpretation and recognition elements: tone, color, texture, pattern, shape, size and associated features.	
Week11	Introduction of ERDAS, Arc GIS and PolSar-Pro, ENVI softwares	
Week12	Digital image processing, image rectification, geometric corrections, Image enhancement techniques	
Week13	Digital image classification, supervised and unsupervised classification.	
Week14	Vegetation Indices, Vegetation Index (VI), Normalized Differential Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI) etc.	
Week15	Practical: Watershed delineation and clipping using ERDAS and Arc GIS. Mapping of forest with PolSarPro software, Biomass estimation using RS techniques.	
	UNIT 3	
Week16	Applications of Multispectral, Hyperspectral, thermal and microwave remote sensing.	
Week17	Case studies on application of remote sensing and GIS in natural resource management.	



Week18	Practical Exam/Assignment submission/Presentation	
	End Tem Exam	

5. Course structure

In Class Lectures

Students will be able to

- 1) Understand remote sensing, GIS and GPS.
- Learn applications of RS and GIS in managing and monitoring forest resources.

Lab Exercises

On line Tutorials

Students will be able to

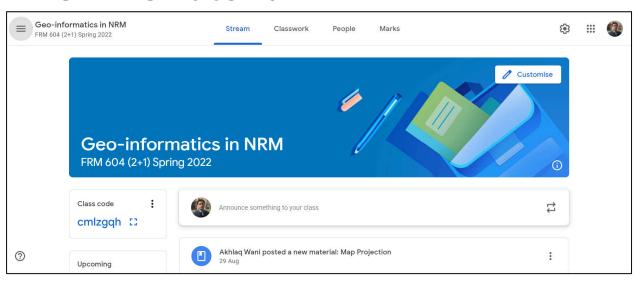
- 1) Handle satellite data using different remote sensing and GIS software.
- 2) Learn different image processing techniques and its application in mapping and modeling.

Google Class Code: cmlzgqh

Students will explore and learn more about

1) Basic concepts of remote sensing, GIS and GPS and its applications through lectures notes and video lectures.

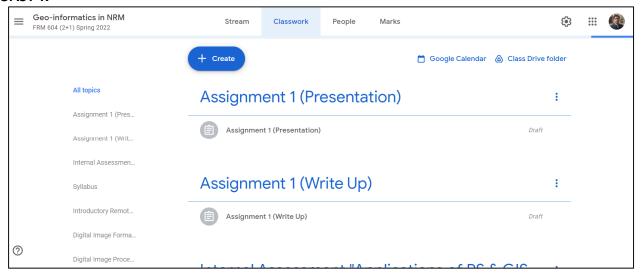
Google Classroom



Students at individual level and in groups will explore and learn more about

- 1) Satellite data handling, Satellite data interpretation.
- 2) Land use land cover mapping and basics of modeling of geoinformatics.
- 3) Prepare and process geographical data and use in class activities.
- 4) Presentation.

Online Tutorial



SKUAST-K

Video Lectures with Links

Digital Image Formats

https://www.youtube.com/watch?v=E2xh8BT5Ur8&list=PLgQLxnNI9f_D7c1JYC 80iF3rFxkoEhj2m&index=1

Digital Image Processing Part-1

https://www.youtube.com/watch?v=j0eqEZ4gpG0&list=PLgQLxnNI9f D7c1JYC8 OiF3rFxkoEhi2m&index=2

Digital Image Processing Part-2

https://www.youtube.com/watch?v=5FdNXsyUP0s&list=PLgQLxnNI9f D7c1JYC 80iF3rFxkoEhj2m&index=3

Accuracy Assessment in Mapping

https://www.youtube.com/watch?v=7dX17bp8tlQ&list=PLgQLxnNI9f D7c1JYC8 OiF3rFxkoEhj2m&index=4&t=8s

False Color Composite & True Color Composite

https://www.youtube.com/watch?v=bcMZHwH9pCU&list=PLgQLxnNI9f_D7c1JY C8OiF3rFxkoEhj2m&index=5

Disclaimer: The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein

SKUAST-K Multiband Operations

https://www.youtube.com/watch?v=42QvKNRx2cY&list=PLgQLxnNl9f_D7c1JYC8OiF3rFxkoEhj2m&index=7

Aerial Photography

https://www.youtube.com/watch?v=4eelhdVFTQo&list=PLgQLxnNI9f_D7c1JYC8OiF3rFxkoEhj2m&index=8

Introduction to Photogrammetry

https://www.youtube.com/watch?v=PTnL7ZI7yJs&list=PLgQLxnNI9f_D7c1JYC8 OiF3rFxkoEhj2m&index=9&t=68s

Scale, Focal Length and Height

https://www.youtube.com/watch?v=f1-kzkcpf9U&list=PLgQLxnNI9f D7c1JYC8OiF3rFxkoEhj2m&index=10&t=19s

Relief Displacement Formula

https://www.youtube.com/watch?v=HDg6oZuq52Y&list=PLgQLxnNI9f_D7c1JYC 8OiF3rFxkoEhj2m&index=11&t=17s

Database Management System (DBMS)

https://www.youtube.com/watch?v=6yEkm_UI7PA&list=PLgQLxnNI9f_D7c1JYC 8OiF3rFxkoEhj2m&index=12

Topology, Thematic and Raster Overlay

https://www.youtube.com/watch?v=WhAQpkAV8tM&list=PLgQLxnNI9f_D7c1J YC8OiF3rFxkoEhj2m&index=13

Map Projection and Types

https://www.youtube.com/watch?v=tlDiHeHsLns&list=PLgQLxnNI9f_D7c1JYC8 OiF3rFxkoEhj2m&index=14

Microwave Remote Sensing

https://www.youtube.com/watch?v=dCt1BYLlm5k&list=PLgQLxnNI9f_D7c1JYC8 OiF3rFxkoEhj2m&index=15&t=101s

Raster data storage and compression

https://www.youtube.com/watch?v=2XvrOQmNnal&list=PLgQLxnNl9f_D7c1JYC8OiF3rFxkoEhj2m&index=16&t=10s

Global Positioning System

https://www.youtube.com/watch?v= m0FZcZGKdk&list=PLgQLxnNI9f D7c1JYC 8OiF3rFxkoEhj2m&index=18&t=30s

How GPS works?

https://www.youtube.com/watch?v=9ees6hLatrE&list=PLgQLxnNI9f_D7c1JYC8 OiF3rFxkoEhj2m&index=17&t=515s

6. Course Assessment

Mode of assessment	% of marks
Quiz 1	5
Mid Term (Objective and Written)	20
Practical/Assignments (Discussion)	25
Quiz 2	5
End Term (Objective and Written)	45
Total	100

7. References

Compulsory

- Joseph, G. (2005). Fundamentals of Remote Sensing-Second edition. Universities Press
- Lillesand, T.M. and Kiefer, W.R.(1994).Remote sensing and Image Interpretation, Fourth edition. John Wiley & Sons, Inc., USA

Environment System Research Institute, (1999). GIS for Everyone. Redlands, CA:ESRI

Recommended

- Campbell, J.B. (2002). Introduction to Remote Sensing-Third edition. Taylor and Francis, London
- Jackson, M.J. (1992). Integrated Geographical Information Systems. International Journal of Remote Sensing, 13(6-7): 1343-1351
- Obi Reddy, G.P. and Sarkar, D. (2012). RS and GIS in Digital Terrain Analysis and Soil Landscape Modelling. NBSS & LUP, Nagpur.