

Geomatics NRM 3212

Spring 2022

Course Teacher(s)

Dr. Akhlaq Amin Wani Dr. Aasif Ali Gatoo Dr. Shah Murtaza Mushtaq

Content

- 1. General Information
- 2. Course Description
- 3. Course Goal
- 4. Course outcome
- 5. Course structure
- 6. Course assessment
- 7. References

1. General Information

Course code	:	NRM 3212
Course Title	:	Geomatics
Number of credits	•	4
Course duration	:	18 weeks
Level	:	Undergraduate
Course Teacher	:	Dr. Akhlaq Amin Wani Dr. Aasif Ali Gatoo Dr. Shah Murtaza Mushtaq
Pre-requisite	•	Prior knowledge of handling computers and basic knowledge in Forestry.

Disclaimer: The European Commission's support for the production of this publication does not constitute an

2. Course description

The course prepares students for careers as leaders in understanding Remote Sensing (RS) and Geographical Information System (GIS) and Applications of RS and GIS in monitoring and managing forest resources.

3. Course objectives

The main course objective is to make students understand the basics of remote sensing and Geographical Information System and Global Positioning System (GPS). It is further aimed at developing among students the skills to use remote sensing and GIS based software. The course is outlined and offered in hybrid mode to enable students learn and pick up at their own pace and have the flexibility in their schedule.

4. Course outcome

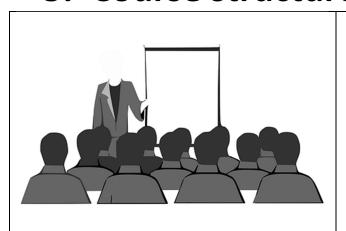
On completion of this course, the students would:

Gain a wider understanding of basic principles of remote sensing and GIS It will enable the students to explore and handle different satellite datasets for specific applications in forests and vegetation landscapes. The students will enhance abilities and skills for mapping and monitoring of changes associated with forest and urban green spaces for effective policy making and management.

Disclaimer: The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held

5. Course structure

	UNIT 1	
Week1	Remote sensing - classification based on source: Active and passive remote sensing	
	Aerial and space remote sensing; Interaction of electromagnetic radiation with atmosphere and earth surface	
Week2	Aerial photographs – types; Photo interpretation	
	Practical: Preparation maps; Visual interpretation of satellite imagery;	
	Forest cover mapping and land use mapping.	
Week3	Satellite remote sensing - platforms and sensors	
	Satellite systems. Indian Remote Sensing Programme	
Week4	Visual and digital image processing;	
Week5	Practical: Digital image processing. Introduction to various GIS software – Q-GIS, ERDAS, Arc GIS etc.	
	Mid Term Exam	
	UNIT 2	
Week6	Application of satellite based remote sensing techniques in forestry	
	vegetation mapping using satellite imagery-NDVI	
Week7	Practical: Hand on exercises on Vegetation Indices, Vegetation Index (VI), Normalized Differential Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI) etc	
Week8	Forest cover monitoring and damage assessment	
	Microwave remote sensing	
	UNIT 3	
Week9	Introduction to GIS.	
	Differences between GIS and conventional cartography	
Week10	Spatial and non-spatial data- Integration of attribute data with spatial data	
	Spatial data - Raster and Vector data-Thematic over lays in GIS	
Week11	Topology building and calculation of area and length etc	
Week12	Practical: Exercises in viewing, editing, overlay.	



AST-K	of the European Union	
	UNIT 4	
Week13	Application of GIS in forestry – using imageries and integration with GIS data	
	Maps-its projection	
Week14	Toposheet and Map reading.	
	Visit to the GIS labs at State level.	
Week15	UNIT 5	
	Global Positioning System (GPS)	
Week16	Applications in resource inventory	
	Global Navigation Satellite System	
Week17	Galileo, GLONASS, QZSS, Compass, IRNSS etc., GAGAN	
	Practical: GPS handling	
Week18	Practical Exam/Assignment submission/Presentation	
	End Tem Exam	

5. Course structure

In Class Lectures Students will be able to

- 1) Understand the basic concepts of remote sensing, GIS and GPS.
- 2) Explain how this technology can be applied in forestry and green space management.

Lab Exercises

Students will be able to

- 1) Handle satellite data using different remote sensing and GIS software.
- 2) Learn different image processing techniques and its application.

On line Tutorials Google Class Code: p4oikrn

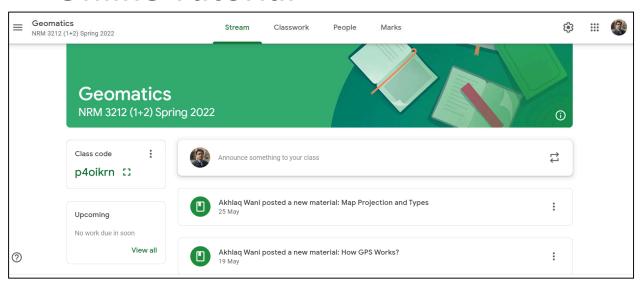
Students will explore and learn more about

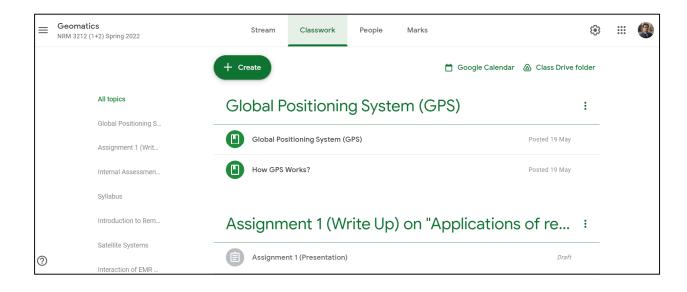
1) Basic concepts of remote sensing, GIS and GPS and its applications through lectures notes and video lectures.

Google Classroom

Assignments/Presentation

Students at individual level and in groups will explore and learn more about


- 1) Satellite data handling, Satellite data interpretation.
- 2) Land use land cover mapping and basics of modeling of geoinformatics.
- 3) Prepare and process geographical data and use in class activities.
- 4) Presentation.



Online Tutorial

Video Lectures and Links

Introduction to Remote Sensing Part-1

https://www.youtube.com/watch?v=TEPdVkWAABc&list=PLgQLxnNI9f_C8Q XAlhXprtN47eBYT3lq6&index=1&t=6s

Introduction to Remote Sensing Part-2

https://www.youtube.com/watch?v=inU7S2n5sg&list=PLgQLxnNI9f_C8QXAIhXprtN47eBYT3lq6&index=2&t=277s

Introduction to Remote Sensing Part-3

https://www.youtube.com/watch?v=QamG5FhnmgY&list=PLgQLxnNI9f_C8Q XAlhXprtN47eBYT3lq6&index=3&t=125s

Satellite Systems

https://www.youtube.com/watch?v=avLN5Xjproo&list=PLgQLxnNI9f_C8QX AlhXprtN47eBYT3lq6&index=4

Digital Image Processing Part-1

https://www.youtube.com/watch?v=j0eqEZ4gpG0&list=PLgQLxnNI9f D7c1J YC8OiF3rFxkoEhj2m&index=2

Digital Image Processing Part-2

https://www.youtube.com/watch?v=5FdNXsyUP0s&list=PLgQLxnNI9f_D7c1J YC8OiF3rFxkoEhj2m&index=3

Interaction of EMR with atmosphere

https://www.youtube.com/watch?v=IspXDE2by_Q&list=PLgQLxnNI9f_C8QX AlhXprtN47eBYT3lq6&index=7&t=120s

Digital Image Resolution

https://www.youtube.com/watch?v=n3nwbNh1OYM&list=PLgQLxnNI9f_C8 QXAlhXprtN47eBYT3lq6&index=8

Types of Resolution

https://www.youtube.com/watch?v=1UxtQNSt970&list=PLgQLxnNI9f_C8QX AlhXprtN47eBYT3lq6&index=9

Introduction to Photogrpammetry

https://www.youtube.com/watch?v=PTnL7ZI7yJs&list=PLgQLxnNI9f_D7c1JY C8OiF3rFxkoEhj2m&index=9&t=68s

False Color Composite & True Color Composite

https://www.youtube.com/watch?v=bcMZHwH9pCU&list=PLgQLxnNI9f_D7c 1JYC8OiF3rFxkoEhj2m&index=5

Multiband Operations

https://www.youtube.com/watch?v=42QvKNRx2cY&list=PLgQLxnNl9f_D7c1 JYC8OiF3rFxkoEhj2m&index=7

Introduction to GIS

https://www.youtube.com/watch?v=1IT9NnYsL-Q&list=PLgQLxnNI9f C8QXAlhXprtN47eBYT3lq6&index=13

GIS models and data representation

https://www.youtube.com/watch?v=E0HQAnoY2Eg&list=PLgQLxnNI9f_C8Q XAlhXprtN47eBYT3lq6&index=14

Introduction to GIS database management system

https://www.youtube.com/watch?v=vO_J7jVhoVc&list=PLgQLxnNI9f_C8QX AlhXprtN47eBYT3lq6&index=15&t=21s

Aerial Photography

https://www.youtube.com/watch?v=4eelhdVFTQo&list=PLgQLxnNI9f_D7c1J YC8OiF3rFxkoEhj2m&index=8

Introduction to Photogrpammetry

https://www.youtube.com/watch?v=PTnL7ZI7yJs&list=PLgQLxnNI9f_D7c1JY C8OiF3rFxkoEhj2m&index=9&t=68s

Scale, Focal Length and Height

https://www.youtube.com/watch?v=f1-kzkcpf9U&list=PLgQLxnNI9f D7c1JYC8OiF3rFxkoEhj2m&index=10&t=19s

Relief Displacement Formula

https://www.youtube.com/watch?v=HDg6oZuq52Y&list=PLgQLxnNI9f_D7c1 JYC8OiF3rFxkoEhj2m&index=11&t=17s

Database Management System (DBMS)

https://www.youtube.com/watch?v=6yEkm_UI7PA&list=PLgQLxnNI9f_D7c1 JYC8OiF3rFxkoEhj2m&index=12

Topology, Thematic and Raster Overlay

https://www.youtube.com/watch?v=WhAQpkAV8tM&list=PLgQLxnNI9f_D7 c1JYC8OiF3rFxkoEhj2m&index=13

Visual Image Interpretation

https://www.youtube.com/watch?v=dclDduYUMI8&list=PLgQLxnNI9f_C8QX AlhXprtN47eBYT3lq6&index=22

Map Projection and Types

https://www.youtube.com/watch?v=tlDiHeHsLns&list=PLgQLxnNI9f_D7c1JY C8OiF3rFxkoEhj2m&index=14

Microwave Remote Sensing

https://www.youtube.com/watch?v=dCt1BYLlm5k&list=PLgQLxnNl9f_D7c1J YC8OiF3rFxkoEhj2m&index=15&t=101s

Raster data storage and compression

https://www.youtube.com/watch?v=2XvrOQmNnal&list=PLgQLxnNI9f_D7c1 JYC8OiF3rFxkoEhj2m&index=16&t=10s

Global Positioning System

https://www.youtube.com/watch?v=_m0FZcZGKdk&list=PLgQLxnNl9f_D7c1 JYC8OiF3rFxkoEhj2m&index=18&t=30s

How GPS works?

https://www.youtube.com/watch?v=9ees6hLatrE&list=PLgQLxnNI9f_D7c1JY C8OiF3rFxkoEhj2m&index=17&t=515s

6. Course Assessment

Mode of assessment	% of marks
Mid Term (Objective and Written)	30
Practical/Assignments (Discussion)	20
End Term (Objective and Written)	50
Total	100

7. References

Compulsory

Joseph, G. (2005). Fundamentals of Remote Sensing-Second edition. Universities Press

Lillesand, T.M. and Kiefer, W.R.(1994).Remote sensing and Image Interpretation, Fourth edition. John Wiley & Sons, Inc., USA

Environment System Research Institute, (1999). GIS for Everyone. Redlands, CA:ESRI

Recommended

- Campbell, J.B. (2002). Introduction to Remote Sensing-Third edition. Taylor and Francis, London
- Jackson, M.J. (1992). Integrated Geographical Information Systems. International Journal of Remote Sensing, 13(6-7): 1343-1351
- Obi Reddy, G.P. and Sarkar, D. (2012). RS and GIS in Digital Terrain Analysis and Soil Landscape Modelling. NBSS & LUP, Nagpur.

Disclaimer: The European Commission's support for the production of this publication does not constitute an