

Link to E-Learning Video/Textbooks

Geomatics NRM 3212

Spring 2022

Course Teacher(s)

Dr. Akhlaq Amin Wani Dr. Aasif Ali Gatoo Dr. Shah Murtaza Mushtaq

1. General Information

Course code	:	NRM 3212
Course Title	:	Geomatics
Number of credits	:	4
Course duration	:	18 weeks
Level	:	Undergraduate
Course Teacher	:	Dr. Akhlaq Amin Wani
		Dr. Aasif Ali Gatoo
		Dr. Shah Murtaza Mushtaq
Pre-requisite	:	Prior knowledge of handling
		computers and basic
		knowledge in Forestry.

2. Course description

The course prepares students for careers as leaders in understanding Remote Sensing (RS) and Geographical Information System (GIS) and Applications of RS and GIS in monitoring and managing forest resources.

3. Course objectives

The main course objective is to make students understand the basics of remote sensing and Geographical Information System and Global Positioning System (GPS). It is further aimed at developing among students the skills to use remote sensing and GIS based software. The

course is outlined and offered in hybrid mode to enable students learn and pick up at their own pace and have the flexibility in their schedule.

4. Course outcome

On completion of this course, the students would:

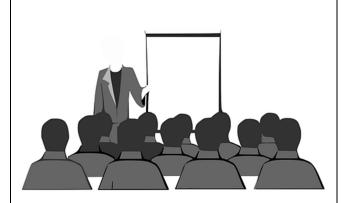
Gain a wider understanding of basic principles of remote sensing and GIS It will enable the students to explore and handle different satellite datasets for specific applications in forests and vegetation landscapes. The students will enhance abilities and skills for mapping and monitoring of changes associated with forest and urban green spaces for effective policy making and management.

5. Course structure

	UNIT 1
Week1	Remote sensing - classification based on source: Active and passive remote sensing
	Aerial and space remote sensing; Interaction of electromagnetic radiation with atmosphere and earth surface
Week2	Aerial photographs – types; Photo interpretation
	Practical: Preparation maps; Visual interpretation of satellite imagery; Forest cover mapping and land use mapping.
Week3	Satellite remote sensing - platforms and sensors
	Satellite systems. Indian Remote Sensing Programme
Week4	Visual and digital image processing;
Week5	Practical: Digital image processing. Introduction to various GIS software – Q-GIS, ERDAS, Arc GIS etc.
	Mid Term Exam
	UNIT 2
Week6	Application of satellite based remote sensing techniques in forestry

pping using satellite imagery-NDVI
d on exercises on Vegetation Indices, Vegetation Index (VI), fferential Vegetation Index (NDVI), Soil Adjusted Vegetation tc
nonitoring and damage assessment
mote sensing
o GIS.
tween GIS and conventional cartography
n-spatial data- Integration of attribute data with spatial data
Raster and Vector data-Thematic over lays in GIS
ling and calculation of area and length etc
cises in viewing, editing, overlay.
GIS in forestry – using imageries and integration with GIS
ection
d Map reading.
S labs at State level.
ning System (GPS)
resource inventory
tion Satellite System
ASS, QZSS, Compass, IRNSS etc., GAGAN
handling
handling n/Assignment submission/Presentation

Disclaimer: The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held


responsible for any use which may be made of the information contained therein

5. Course structure

In Class Lectures

Students will be able to

- 1) Understand the basic concepts of remote sensing, GIS and GPS.
- 2) Explain how this technology can be applied in forestry and green space management.

Lab Exercises

Students will be able to

- 1) Handle satellite data using different remote sensing and GIS software.
- 2) Learn different image processing techniques and its application.

Google Class Code: p4oikrn

On line Tutorials

Students will explore and learn more about

1) Basic concepts of remote sensing, GIS and GPS and its applications through lectures notes and video lectures.

Google Classroom

Assignments/Presentation

Students at individual level and in groups will explore and learn more about

- 1) Satellite data handling, Satellite data interpretation.
- 2) Land use land cover mapping and basics of modeling of geoinformatics.
- 3) Prepare and process geographical data and use in class activities.
- 4) Presentation.

Link to E-Courses (Videos/Textbooks)

Topic	Link to the E-course
Introduction to Remote Sensing Part-1	https://www.youtube.com/watch?v=TEPdVkWAABc&list= PLgQLxnNI9f C8QXAlhXprtN47eBYT3lq6&index=1&t=6s
Introduction to Remote Sensing Part-2	https://www.youtube.com/watch?v=- inU7S2n5sg&list=PLgQLxnNI9f_C8QXAlhXprtN47eBYT3lq6 &index=2&t=277s
Introduction to Remote Sensing Part-3	https://www.youtube.com/watch?v=QamG5FhnmgY&list =PLgQLxnNI9f_C8QXAlhXprtN47eBYT3lq6&index=3&t=125 s

Satellite Systems	https://www.youtube.com/watch?v=avLN5Xjproo&list=PL
	gQLxnNI9f C8QXAlhXprtN47eBYT3lq6&index=4
Digital Image	https://www.youtube.com/watch?v=j0eqEZ4gpG0&list=P LgQLxnNl9f D7c1JYC8OiF3rFxkoEhj2m&index=2
Processing Part-1	LEQUATION D'ACTIT COOIFST PAROETIJZITI & ITIUEX – Z
Digital Image	https://www.youtube.com/watch?v=5FdNXsyUP0s&list=P
Processing Part-2	LgQLxnNl9f D7c1JYC8OiF3rFxkoEhj2m&index=3
Interaction of EMR	https://www.youtube.com/watch?v=lspXDE2by_Q&list=P
with atmosphere	LgQLxnNl9f C8QXAlhXprtN47eBYT3lq6&index=7&t=120s
Digital Image	https://www.youtube.com/watch?v=n3nwbNh1OYM&list
Resolution	=PLgQLxnNI9f_C8QXAlhXprtN47eBYT3lq6&index=8
Types of Resolution	https://www.youtube.com/watch?v=1UxtQNSt970&list=P
	LgQLxnNl9f_C8QXAlhXprtN47eBYT3lq6&index=9
Introduction to	https://www.youtube.com/watch?v=PTnL7ZI7yJs&list=PLg
Photogrpammetry	QLxnNI9f_D7c1JYC8OiF3rFxkoEhj2m&index=9&t=68s
False Color	https://www.youtube.com/watch?v=bcMZHwH9pCU&list
Composite & True	=PLgQLxnNI9f_D7c1JYC8OiF3rFxkoEhj2m&index=5
Color Composite	
Multiband	https://www.youtube.com/watch?v=42QvKNRx2cY&list=P
Operations	LgQLxnNI9f_D7c1JYC8OiF3rFxkoEhj2m&index=7

Introduction to GIS	https://www.youtube.com/watch?v=1lT9NnYsL- Q&list=PLgQLxnNI9f_C8QXAlhXprtN47eBYT3lq6&index=13
GIS models and	https://www.youtube.com/watch?v=E0HQAnoY2Eg&list=
data representation	PLgQLxnNI9f_C8QXAlhXprtN47eBYT3lq6&index=14
Introduction to GIS database management system	https://www.youtube.com/watch?v=vO_J7jVhoVc&list=PL gQLxnNI9f_C8QXAlhXprtN47eBYT3lq6&index=15&t=21s
Aerial Photography	https://www.youtube.com/watch?v=4eelhdVFTQo&list=P LgQLxnNl9f D7c1JYC8OiF3rFxkoEhj2m&index=8
Introduction to Photogrpammetry	https://www.youtube.com/watch?v=PTnL7ZI7yJs&list=PLg QLxnNI9f D7c1JYC8OiF3rFxkoEhj2m&index=9&t=68s
Scale, Focal Length and Height	https://www.youtube.com/watch?v=f1- kzkcpf9U&list=PLgQLxnNI9f_D7c1JYC8OiF3rFxkoEhj2m∈ dex=10&t=19s
Relief Displacement Formula	https://www.youtube.com/watch?v=HDg6oZuq52Y&list= PLgQLxnNI9f_D7c1JYC8OiF3rFxkoEhj2m&index=11&t=17s
Database Management System (DBMS)	https://www.youtube.com/watch?v=6yEkm_UI7PA&list=P LgQLxnNI9f_D7c1JYC8OiF3rFxkoEhj2m&index=12
Topology, Thematic and Raster Overlay	https://www.youtube.com/watch?v=WhAQpkAV8tM&list =PLgQLxnNI9f D7c1JYC8OiF3rFxkoEhj2m&index=13
Visual Image Interpretation	https://www.youtube.com/watch?v=dclDduYUMI8&list=P LgQLxnNI9f C8QXAlhXprtN47eBYT3lq6&index=22
Map Projection and Types	https://www.youtube.com/watch?v=tlDiHeHsLns&list=PLgQLxnNl9f_D7c1JYC8OiF3rFxkoEhj2m&index=14

Microwave Remote Sensing	https://www.youtube.com/watch?v=dCt1BYLlm5k&list=P LgQLxnNI9f_D7c1JYC8OiF3rFxkoEhj2m&index=15&t=101s
Raster data storage and compression	https://www.youtube.com/watch?v=2XvrOQmNnal&list= PLgQLxnNl9f D7c1JYC8OiF3rFxkoEhj2m&index=16&t=10s
and compression	LEQUENTIALIST D7C13TC0OH 31T AROLINJ2HIQHIQEX=10Qt=103
Global Positioning	https://www.youtube.com/watch?v=_m0FZcZGKdk&list=
System	PLgQLxnNI9f D7c1JYC8OiF3rFxkoEhj2m&index=18&t=30s
How GPS works?	https://www.youtube.com/watch?v=9ees6hLatrE&list=PL
	gQLxnNI9f_D7c1JYC8OiF3rFxkoEhj2m&index=17&t=515s

6. References

Compulsory

Joseph, G. (2005). Fundamentals of Remote Sensing-Second edition. Universities

Press

Lillesand, T.M. and Kiefer, W.R.(1994).Remote sensing and Image Interpretation, Fourth edition. John Wiley & Sons, Inc., USA

Environment System Research Institute, (1999). GIS for Everyone. Redlands, CA:ESRI

Recommended

- Campbell, J.B. (2002). Introduction to Remote Sensing-Third edition. Taylor and Francis, London
- Jackson, M.J. (1992). Integrated Geographical Information Systems. International Journal of Remote Sensing, 13(6-7): 1343-1351
- Obi Reddy, G.P. and Sarkar, D. (2012). RS and GIS in Digital Terrain Analysis and Soil Landscape Modelling. NBSS & LUP, Nagpur.