HEAT VULNERABILITY INDEX IN INDIAN DISTRICTS

Dissertation submitted in partial fulfilment of the requirements of the award of the degree of

MASTER OF SCIENCE

Submitted by Bhawna Yadav

Supervisor Prof. P. K. Joshi

Spatial Analysis and Informatics Lab School of Environmental Sciences Jawaharlal Nehru University New Delhi-110067

2022

ACKNOWLEDGEMENT

"Feeling gratitude and not expressing it is like wrapping a present and not giving it."

- William Arthur Ward

My greatest journey of learning would not have been possible without the guidance, wishes and constant support of a few good people. First of all, I wish to express my deep gratitude, appreciation and sense of indebtedness to my supervisor Prof. P. K. Joshi for giving me the kind opportunity and excellent guidance in completing my dissertation under his supervision. Without his guiding lights of wisdom, belief, and care at each step, this journey would have been totally impossible. I would like to thank Prof. Paulraj Rajamani, Dean of School of Environmental Sciences (SES) who provided resources and facilities of the school during my course of work.

More than a mentor, and a friend, that is what I can say to describe Dr. Susanta Mahato who was kind enough to share his valuable time and inputs in every single process that I went through at each step of my dissertation. I am thankful to Mr Praveen Kumar, who has been my major go to person whenever I was stuck with any of the analysis or naïve doubts. I am also very thankful to Geetanjali, who has always motivated me and cheered me to give my best, and being worried about me being alone in the laboratory, thus accompanying me always. Their availability and tolerance throughout made this journey easier and complete. I am also thankful to other members of laboratory, Manjul Panwar, Satish Kumar Saini and Jayshree Das for help and cooperation.

I am thankful to Government of India, for Census of India 2011 and United States Geological Survey (USGS) for making datasets available, which were used in this research work. The equipment support from the Sustainable Natural Resource Use in Arctic and High Mountainous Areas (SUNRAISE) and Urban Resilience and

Adaptation for India and Mongolia (URGENT) projects-funded by the Erasmus+

Programme of the European Union are duly acknowledged.

I am thankful for the affection, care and support that I have received from my

classmates, friends and seniors for providing healthy environment throughout these

two years.

I express my profound gratitude to my family for their love, support and

constant encouragement throughout this work. I cannot express in words how much

grateful I am to my father and mother for the constant support and motivation. Big

thanks to my mother for putting up with my antics, supporting and motivating me

especially during those unexpected anxiety and sickness ridden days. This journey

cannot be meaningful without thanking my best friend Priyamwada who graciously

listened to each and all highs and lows of my dissertation journey. In the end, I would

also like to thank myself for consistently working despite all the illness and crisis

situations.

Date: 21 June 2022

New Delhi

(Bhawna Yadav)

(Anawna

CONTENTS

	Certificate	2
	Acknowledgement	3
	Contents	5
	List of Figures	7
	List of Tables	8
	List of Abbreviations	9
Chapter 1	INTRODUCTION	10-11
	1.1 Objectives	11
Chapter 2	LITERATURE REVIEW	12-14
Chapter 3	MATERIALS AND METHODOLOGY	15-25
	3.1 Study Area	15
	3.1.1 Geographical Location	15-16
	3.1.2 Demography and Biodiversity	16
	3.2 Heat Vulnerability Index	16
	3.3 Data Collection	17-25
	3.3.1 Data Sources	17-19
	3.3.2 Estimation of Environmental Indices	19-20
	3.3.3 Selection of Indicators	21-25
Chapter 4	RESULTS	26-45
	4.1 Heat Vulnerability Index of Indian Districts	27-39
	4.1.1 Predicted Heat Vulnerability	27-30
	4.1.2 Observed Heat Vulnerability	31-34

	4.1.3 Residual	35-36
	4.1.4 Components of Heat Vulnerability	37-38
	4.2 Heat Vulnerability Index of NCT of Delhi	39-43
	4.2.1 Components of Heat Vulnerability	42-43
Chapter 5	DISCUSSION	44-45
Chapter 6	CONCLUSION	46
	REFERENCES	47-50

LIST OF FIGURES

Figure 1	Components and Indicators to assess Heat Vulnerability	22
Figure 2	Predicted Heat Vulnerability of Indian Districts	28
Figure 3	Percentage of districts with Predicted Heat Vulnerability	29
Figure 4	Observed Heat Vulnerability of Indian Districts	32
Figure 5	Percentage of districts with Observed Heat Vulnerability	33
Figure 6	Residual of the Predicted and Observed HVI score	36
Figure 7	Components of Heat Vulnerability of Indian Districts	39
Figure 8	Heat Vulnerability Index of Delhi	40
Figure 9	Heat Vulnerability components of Delhi	43

LIST OF TABLES

Table 1	Literature review	12
Table 2	Data source and time of the indicators taken in the study	17
Table 3	Indicators and their role for the study	23
Table 4	Predicted Heat Vulnerability Data	29
Table 5	Extremely Vulnerable Districts	30
Table 6	Least Vulnerable Districts as per Predicted HVI	31
Table 7	Observed Heat Vulnerability Data	32
Table 8	Extremely Vulnerable Districts as per Observed HVI	34
Table 9	Least Vulnerable Districts as per observed HVI	35
Table 10	Residual HVI value	36
Table 11	Districts with least residual value	37
Table 12	Predicted heat vulnerability of districts of NCT of Delhi	41
Table 13	Observed heat vulnerability of districts of NCT of Delhi	41
Table 14	Residual value of Observed and Predicted HV score of districts of NCT	of
Delhi		41

LIST OF ABBREVIATIONS

CGI - Census unit-based general indicator

ESRI - Environmental Systems Research Institute

FSI - Forest Survey of India

GIS - Geographical Information Systems

GPS - Global Positioning System

IPCC - The Intergovernmental Panel on Climate Change

IR - Infra-red

ISFR - India State of Forest Report

JNU - Jawaharlal Nehru University

JPEG - Joint Photographic Experts Group

LULC - Land Use Land Cover

MAM - March April May

NCT - National Capital Territory

NDVI - Normalized Difference Vegetation Index

RGI - Raster-based general indicator

RS - Remote Sensing

UHI - Urban Heat Island

USGS - United States Geological Survey

IMD - Indian Meteorological Department

EM-DAT - Emergency Events Database

Last Page

The appended material is based on research carried out at the partner institution of URGENT Project, and has potentially utilised the equipment support, inputs based on course revised/developed and training programs (*lecture series, research seminar and webinars*) through the URGENT Project.

The document is part of thesis part of PhD/MSc/MA research work carried out at the Jawaharlal Nehru University. Purposefully limited pages are shared to avoid copyright and other issues. However, the full thesis can be shared on request.

The complete thesis can be obtained from Prof P K Joshi (<u>pkjoshi27@hotmail.com</u> or <u>pkjoshi@mail.jnu.ac.in</u>).