

Template syllabus of the new/revised courses

Course Name: ECOL 481: DIGITAL IMAGE PROCESSING FOR ENVIRONMENTAL APPLICATIONS

Number of credits: 3

Period: Monsoon semester

Coordinator	S Jayakumar
Credits	3
Lecturers	
Level	Postgraduate
Host institution	Pondicherry University
Course duration	18 weeks
New/revised	New

Summary

This 3 ECTS course provides students an in-depth theoretical knowledge and hands-on training in satellite data handling, processing, mapping and analysis.

Target student audiences

Master students majoring in Ecology and Environmental Sciences, Computer Science, Physics, Statistics, Pollution technology and environmental engineering, geosciences, sociology will be the target audiences.

Prerequisites

Required courses (or equivalents): Basic understanding on Mathematics (school higher level), English language skill, computer operation (Windows/Mac).

Aims and objectives

The main aim of the course is to provide students what is environmental informatics and modeling and how can it be accomplished. The objectives of the course are to provide the important aspects of DBMS, to explain how do extract information from various datasets, to provide a fundamental understanding on how to integrate data, perform analysis and interpret the outputs, to provide the students to know about the basic components of information system, to make them understand how to perform suitability and vulnerability modeling and to demonstrate 2D and 3D data analysis.

The Authentic Tasks are:

General learning outcomes:

By the end of the course, successful students will:

1. Know the significance of environmental informatics and its relevance to the natural resources management.

- 2. be familiar with various database management systems
- 3. be able to retrieve data from DBMS through query
- 4. know the different types of information extraction

5. be able to conceptualize the types of thematic maps required and the appropriate source of data to prepare the different types thematic maps in both analog and digital formats

- 6. be able to think spatially to manage the natural resources
- 7. be familiar with the concept and framework of information system.
- 8. know the concept of 2d and 3d data analysis.

Overview of sessions and teaching methods

The course will make most of interactive and self-reflective methods of teaching and learning.

Learning methods

- In class Lectures (face-to-face)
- E-learning materials Video lectures
- Group work Fieldtrip, data collection, analysis and report presentation
- Literature review and assignment submission

Course outline

Week - 1	Introduction to environmental informatics	
	Environmental data, sampling, primary and secondary data	
Week - 2	Data sources, data quality and standards	
Week - 3	Introduction to database management system	
Week - 4	Significance of DBMS and spatial data structures	
Week - 5	Resource information extraction – air borne, space borne and data	
	Resource information extraction from topomap and climate data	
Week - 6	Digital database creation	
	Introduction to data analysis and visualization	
Week – 7	Data integration, trend analysis, pattern analysis	
Week – 8	Understanding data layers and weightage	

Erasmus+ Programme of the European Union 619050-ЕРР-1-2020-1-DE-ЕРРКА2-СВНЕ-ЈР

Week – 9	Spatial environment and spatial analysis
	Introduction to spatial modeling
Week – 10	Environmental suitability and vulnerability modeling
Week – 11	Structure and components of information system
Week – 12	Working with GPS and data handling
Week – 13	Map reading and information extraction
Week – 14	2d data analysis
Week – 15	3d data analysis

Literature

Compulsory

- 1. Jensen, JR, 2013. Remote Sensing of the Environment: An Earth Resource Perspective –, 2nd Edition, Prentice Hall.
- 2. Lillesand, T. and Kiefer, RW. 2008. Remote Sensing and Image Interpretation Sixty Edition, John Wiley & Sons, Inc,

Recommended:

- 1 ERDAS IMAGINE Field Guide, Erdas Inc., USA, 2017.
- 2 ERDAS IMAGINE User Guide, ErdasInc, USA, 2017.

Revised Syllabus DIGITAL IMAGE PROCESSING FOR ENVIRONMENTAL APPLICATIONS

ECOL: 481

CREDITS: 3

COURSE OBJECTIVE: To give students a theoretical background and hands-on training in satellite data handling, processing, mapping and analysis.

Unit I: Satellite data-Introduction

Data downloading from USGS Earth Explorer, Data Import/data Export, Band or layer information, Data Format, Metadata detail, Layer Stacking. (8 Hours)

Unit II: Study of PAN chromatic, Multispectral, Hyper spectral images and Elevations data Raster layer information, Layer statistics, FCC creation. (8 Hours)

Unit III: Data Preparation

Geometric correction of scanned maps, Projection and reprojection, Mosaicing, Stitching, Subsetting/Masking. (8 Hours)

Unit IV: Analysis of spectral characteristics

Spectral reflectance pattern of Vegetation - collecting phenological variation, Soil - spectral reflectance pattern of sand, dry soil and wet soil, Water - spectral reflectance pattern of Shallow water and deep water, Urban - spectral reflectance pattern of buildings, road, other impermeable surfaces. (8 Hours)

Unit V: Data Processing

Digital elevation model, Slope and aspect creation, Satellite data band rationing – Ratio Vegetation Index (RVI), Difference Vegetation Index (DVI), Normalized Difference Vegetation Index (NDVI), Soil-adjusted Vegetation Index (SAVI), Soil Wetness Index (SWI) **(8 Hours)**

<u>COURSE OUTCOME:</u> At the end of the course, students will be well versed in satellite data handling, image processing, mapping and environmental applications.

Course workload

The table below summarizes course workload distribution:

Activities	Learning outcomes	Assessment	Estimated workload (hours)
In-class activities (42 ho	In-class activities (42 hours)		
Lectures	Understanding the fundamentals of environmental informatics and modeling in natural resources management	Class participation	20 hours
Moderated in-class discussions	Understanding the database management system, basic structure and function of information system	Class participation and preparedness for discussions	7 hours
In-class assignments, field assignment	Understanding information extraction from different data sources, basic framework of data collection, sampling, data quality standards	Class participation and preparedness for assignments	5 hours
Reading and discussion of assigned papers for seminars and preparation for lectures	Understanding the application of environmental informatics in various sectors, how do institutions make use of environmental informatics for better management of resources, how do people	Class participation, creative and active contribution to discussion	5 hours

Urban Resilience and Adaptation for India and Mongolia

curricula, capacity, ICT and stakeholder collaboration GENT support green & blue infrastructure and nature-based

Co-funded by the Erasmus+ Programme of the European Union solutions

619050-EPP-1-2020-1-DE-EPPKA2-CBHE-JP

	benefit of it, how to improve the information system more robust and user friendly.		
Group project presentation	Ability to make presentation, effective communication, critical interpretation of data, response to audience	Quality of group assignments and individual presentations	5 hours
Independent work (100	hours)		
 Group work: Contribution to the group case-study projects Contribution to the preparation and delivery of individual presentation 	Ability to understand the potential significance and applications of information system in various sectors, ability to conceptualize the information system and system's requirement, ability to assess the usage of information system by public, scientists and bureaucrats team work, problem solving, discussion with members of the group, convey the ideas clearly	Quality of group assignments and individual presentations	30 hours
Course group assignment	Ability to conceptualize the framework for environmental informatics with reference to a particular sector/resource, ability to identify data needs, quality standards, data integration, ability to prepare spatial model diagram with suitable weights to relevant thematic layers	Quality of developed strategy and their presentation	20 hours
Group presentation	Ability to interpret data, to analyze audience, and to use the concepts, tools, and methods for communicating the strategy developed	Quality of group assignments and individual presentations	25 hours
Individual study	Ability to understand the fundamental and environmental informatics and its importance,	Quality of answers to questions in the	25 hours

Total			142 hours
	analysis, and modeling		
	knowledge on data integration,		
	datasets, comprehensive		
	information from different	examination	
	Understanding of various DBMS,	final	

Grading

The students' performance will be based on the following:

Assessment

- Progress assessment (40%):
 - Exercise (10%): students have to complete the quiz or seminar of each topic.
 - Homework (10%): 1. Journal paper review (5%), Assignment on information extraction (5 %) or one essay on conceptual framework of environmental informatics (5%)
 - Group report (20%): The entire class will be divided into groups of 5-6 students and be given an option to choose any one of the following topics for group project report.
 - Biodiversity information system
 - Forest information system
 - Soil information system
 - Ocean information system
 - Agriculture information system
 - Fire information system
 - Land information system
- Final assessment (60%):
 - Final examination (60%)

Evaluation

Performances of students in each paper are expressed in terms of marks as well as in Letter Grades. In case of fractions the marks shall be rounded off to nearest integer. The class interval for the purpose of awarding the grades can be arrived at by dividing the difference between the highest mark secured and the minimum pass mark by 6 as there are six passing grades. The formula is given below:

Where, K = class interval, X= the highest mark in the subject.

The grades may be awarded as given in the following Table II.

Range of	Letter Grade	Points for Calculate
Marks in %		of CGPA
X to (X-K)+1	0	10
(X-K) to (X-2K)+1	A+	9
(X-2K) to (X-3K)+1	А	8
(X-3K) to (X-4K)+1	B+	7
(X-4K) to (X-5K)+1	В	6
(X-5K) to 50	С	5
Below 50	F	0
Failure due to lack	FA	0
of attendance		

. . ..

K should not be rounded off to less than two decimal places. The numbers given in Range of Marks column, (X-K), (X-2K), (X-3K), etc., can be rounded off to the nearest whole number.

In courses where the number of students who have secured 50 marks and above is less than 10 then grading may be given based on the Table III. **Table III**

Range of	Letter Grade	Points for	
Marks in %		Calculate of CGPA	
81-100	0	10	
71-80	A+	9	
66-70	А	8	
61-65	B+	7	
56-60	В	6	
50-55	С	5	
Below 50	F	0	
Failure due to lack	FA	0	
of attendance			

In order to declare the pass, a Student should get

a) A minimum of 40% marks in end-semester exam, and

b) A minimum of 50% marks in aggregate when Internal Assessment and End-Semester marks are added.
