

Urban Resilience and Adaptation for India and Mongolia curricula, capacity, ICT and stakeholder collaboration to support green & blue infrastructure and nature-based solutions

619050-EPP-1-2020-1-DE-EPPKA2-CBHE-JP

Revised Course

Remote Sensing, GIS for Disaster Management Remote Sensing, GIS for Emergency Management

Semester -I: January – June

Coordinator	Prof P K Joshi
Credits	4 Credits
Lecturers	Prof P K Joshi
Level	M.A.
Host institution	Special Centre for Disaster Research (SCDR), Jawaharlal Nehru University, New Delhi
Course duration	One Semester [January – June]

Summary

This one full semester core course provides the Master level students of Disaster Studies the basic understanding of remote sensing and GIS for disaster emergency management. This course focuses on basics of spatial data including remote sensing, GIS database and GPS technology. This course is about procedures to acquire and process satellite remote sensing data, create, collect, analyze and evaluate geospatial data for risk assessment from natural and man-made hazards. The course includes individual assignments.

Target Student Audiences

Semester - II Students of M.A.

Prerequisites

- Nil

Aims and Objectives

This course has been designed with a view to help students in developing a comprehensive understanding and knowledge on remote sensing and GIS for *disaster* emergency management. This course introduces the principal concepts and techniques of Remote Sensing and GIS, primarily from the perspective of disasters and its aptness for disaster management. It addresses fundamentals and theoretical aspects of interpretation. Course consists of two interrelated parts: a theoretical one that focuses on the concepts to understand disasters footprint as one of Sendai priorities and a practical one that aims at

Urban Resilience and Adaptation for India and Mongolia curricula, capacity, ICT and stakeholder collaboration to support green & blue infrastructure and nature-based solutions

619050-EPP-1-2020-1-DE-EPPKA2-CBHE-JP

developing hands-on skills in understanding and displaying risk prone areas using (mostly software) tools.

General Learning Outcomes:

By the end of the course, successful students will:

- Understand the fundamental concept and science of remote sensing and GIS
- Learn the processing of satellite remote sensing data
- Learn spatial data creation and spatial modelling tools
- To know and use sources of remote sensing and GIS datasets,
- Understand importance of geospatial approaches for disaster depiction and understanding

Overview of Sessions and Teaching Methods

The course will make most of interactive and self-reflective methods of teaching and learning including mainly lectures and presentations. It will start with an overview of spatial and temporal data concepts and related terms. Subsequently it will build the science and practice of remote sensing and geospatial data and their integration in geospatial approaches. The sessions will take help of blended teaching and learning approaches for interaction lecturing and hands-on on different course components.

Course Workload

The table below summarizes course workload distribution:

Activities	Learning outcomes	Assessment	Estimated workload (hours)	Self- Study (hours)
In-class activities	5			
Lectures and	Introduction to the concepts of spatial	Mid Semester	04	04
Presentations	and temporal data. Significance of	Examination		
	space, location, place and map making			
Lectures and	Understanding Disaster and associated	Mid Semester	04	04
Presentations	risk: Introduction to disasters, impact	Examination		
	and mitigation in Global and Indian			
	context; causes and consequences of			
	disaster,—elements of multiple risk			
	mapping, resource mapping,			
	landscape characterizing, assessment,			
	and reduction strategies			
Lectures and	Remote Sensing: The electromagnetic	Mid Semester	04	04
Presentations	radiation principles, spectral	Examination		
	reflectance curves, sensors and			
	platforms, multispectral, thermal,			
	microwave, LiDAR, hyperspectral,			

Co-funded by the Erasmus+ Programme of the European Union

619050-EPP-1-2020-1-DE-EPPKA2-CBHE-JP

	image interpretation, specific missions			
	for earth observation, IRS/Landsat			
	series, GEOSS, Geocast, NOAA, long			
	term environmental observation sites			
	and land information system.			
Lectures and	Digital Image Processing: Rectification,	Mid Semester	10	10
Presentations	enhancements, classification –	Examination		
	unsupervised, supervised, hybrid,			
	accuracy assessment. Biophysical			
	characterization (LST, NDVI,			
	Green/Blue Infrastructure)			
Lectures and	Geographic information System and	End Semester	10	10
Presentations	spatial data types: vector and raster	Examination		
	representation, topology and spatial			
	relationships, scale and resolution,			
	spatial data entry and preparation,			
	integration of data and map.			
	Global Position System: basic			
	concepts, functions, data collection			
Lectures and	RS & GIS Global and national initiatives	End Semester	04	04
Presentations	for Disaster Risk Management:	Examination		
	Disaster management framework of			
	India and recent initiatives by Govt. of			
	India with special emphasis on DRR,			
	Global initiatives (UNISDR, Committee			
	on the Peaceful Uses of Outer Space			
	and etc.), EcoDRR, NBS.			
Lectures and	Disaster Management Support (DMS),	End Semester	04	04
Presentations	Status in India for use of space inputs	Examination		
	Mainstreaming DRR in Development,			
	Planning Sustainable development in			
	the context of Sendai framework and			
	SDG's, Disaster Recovery-Strategy			
Independent wo	rk			
Hands-on	Ability to interpret data, and to use	Individual	16	16
exercises	the concepts, tools, and methods for	Presentations		
	communicating information			
Total			56	56

Grading

The students' performance will be based on the following:

- Quizzes/Surprise Test 10%
- Mid Semester Examination 30%
- End Semester Examination 50%
- Individual Assignments 10%

Urban Resilience and Adaptation for India and Mongolia curricula, capacity, ICT and stakeholder collaboration to support green & blue infrastructure and nature-based solutions

619050-EPP-1-2020-1-DE-EPPKA2-CBHE-JP

Grade	Grade Point
A+	9
А	8
A-	7
B+	6
В	5
B-	4
C+	3
С	2
C-	1
F	0

FGPA	
8.5 and above	
7.5 and above but less than 8.5	
6.5 and above but less than 7.5	
5.5 and above but less than 6.5	
4.5 and above but less than 5.5	
3.5 and above but less than 4.5	

Class/Division High First Class Middle First Class Lower First Class High Second Class Middle Second Class Lower Second Class

Course Schedule: Semester -I: July – December

Course Assignments

The Structure of Individual Assignments will be as follows:

- Hands-on exercises using Quantum GIS an SAGA GIS.
- Review of research articles and working paper with given objectives.

Literature

- Jensen, J.R. (2004). Introductory Digital Image Processing: A Remote Sensing Perspective. 3rd Edition, Prentice Hall. ISBN-13: 978-0131453616
- Jensen, J.R. (2006). Remote Sensing of the Environment: An Earth Resource Perspective. 2nd Edition, Pearson Series. ISBN-13: 978-0131889507
- Joseph, G. (2003), Fundamentals of Remote Sensing, Orient Longman Press, Bangalore.
- Kumar P, Geneletti D (2015) How are climate change concerns addressed by spatial plans? An evaluation framework, and an application to Indian cities. Land Use Policy 42: 210–226. doi: 10.1016/j.landusepol.2014.07.016
- Lillesand, T. R. W. Kiefer, J. Chipman (2007) Remote Sensing and Image Interpretation. 6th Edition, Wiley. ISBN-13: 978-0470052457
- Pu, R. (2017). Hyperspectral Remote Sensing: Fundamentals and Practices (Remote Sensing Applications Series). 1st Edition, CRC Press. ISBN-13: 978-1138747173
- Raju E, Becker P (2013). Multi-organisational coordination for disaster recovery: The story of post-tsunami Tamil Nadu, India. Int J Disaster Risk Reduct 4:82–91. doi: 10.1016/j.ijdrr.2013.02.004
- Sabins, F.F., (1996), Remote Sensing: Principles and Interpretation, 3 rd Ed., Freeman & Co., New York.
- Thekkan, A.F., George, A., Prasad, P.R.C., Joseph, S. (2022). Understanding Blue-Green Infrastructure Through Spatial Maps: Contribution of Remote Sensing and GIS Technology. In: Dhyani, S., Basu, M., Santhanam, H., Dasgupta, R. (eds) Blue-Green Infrastructure Across Asian Countries. Springer, Singapore. https://doi.org/10.1007/978-981-16-7128-9_6